لودسل چیست ؟لودسل یک نوع حسگر (Sensor) الکترونیکی برای اندازهگیری وزن و نیرو است که در انواع کششی، خمشی، فشاری و پیچشی ساخته شده است.
موارد کاربرد لودسل چیست ؟
این محصول برای اندازهگیری نیرو در کارخانجات مختلف و نیز اندازهگیری کشش کابلها و کشش نخ در کارخانجات نساجی و سایر صنایع استفاده میشود.
اندازهگیری وزن بطریقه دیجیتال در ترازوهای الکترونیکی نیز نیازمند لودسل میباشد. امروزه انواع مختلف لودسل با ظرفیتهای متفاوت در ساخت ترازوها و باسکولهای الکترونیکی کاربرد فراوان دارد.
سیستمهای اتوماتیک بر اساس اندازهگیری وزن مواد در کارخانجات مواد غذایی - کارخانجات آسفالت - پلانتهای مواد شیمیایی همه از لودسل استفاده مینمایند.
ساختار لودسل چگونه است ؟
لودسل شامل یک هسته فلزی (از آلیاژ خاص) و تعدادی strain gauge مجموعه ای از مقاومت های الکتریکی میباشد که در اثر اعمال نیرو مانند تمام مواد تغییر شکل مییابد اما پس از برداشتن نیرو به حالت اولیه خود برمیگردد . میزان برگشتپذیری این ماده تعیین کننده کیفیت و دقت و دیرپایی لودسل است.
دقت لودسل یعنی چه و چگونه تعیین میشود؟
دقت لودسل یعنی قدرت تفکیک آن نسبت به ظرفیت کل و نیز حد خطای مجموع آن .
عوامل دخیل در دقت و کیفیت لودسل نوع آلیاژ هسته و ساختار strain gauge میباشد . موسسه oiml ( واقع در سوئیس ) قدرت تفکیک و خطای مجموع لودسل و رفتار لودسل تحت رطوبت و درجه حرارت را بر اساس استانداردهای خاص مورد ارزیابی قرار میدهد کلاس دقت لودسل را تعیین میکند.
کلاس دقت توصیه شده برای لودسلهای مورد استفاده برای توزین تجارتی تعیین شده است.
مسئولیت و تضمین تطبیق لودسل با استانداردهای اجباری به عهده شرکت تولید کننده است.
سنسورهای مغناطیسی از آهنربای دائمی و یا آهنربای الکتریکیِ تولید شده از جریان ac و dc استفاده می کند. سنسورهای مغناطیسی ، بطور کلی ، بر میدان مغناطیسی عمل می کنند و ویژگیهای آنها تحت تاثیر میدان مغناطیسی تغییر می کند. از ویژگیهای این سنسورها غیر تماسی بودن (Non contact)آنهاست. در آنها هیچ اتصال مکانیکی میان قسمت های متحرک و قسمت های ثابت وجود ندارد. این خاصیت منجر به افزایش طول عمر آنها شده است.
بطور کلی موقعیت سنجی از روش های مختلف زیر قابل حصول است :
خازنی
جریان
یورشی
نوری
مقاومتی
سونار
لیزری
پیزوالکتریک
القایی
مغناطیسی
سنسور های مغناطیسی برای بیش از 2000سال است که در حال استفاده می باشند. کاربرد اخیر سنسورهای مغناطیسی در رهیابی یا ناوبری(Navigation) می باشد.
سنسورهای مغناطیسی از آهنربای دائمی و یا آهنربای الکتریکیِ تولید شده از جریان ac و dc استفاده می کند. سنسورهای مغناطیسی ، بطور کلی ، بر میدان مغناطیسی عمل می کنند و ویژگیهای آنها تحت تاثیر میدان مغناطیسی تغییر می کند. از ویژگیهای این سنسورها غیر تماسی بودن (Non contact)آنهاست. در آنها هیچ اتصال مکانیکی میان قسمت های متحرک و قسمت های ثابت وجود ندارد. این خاصیت منجر به افزایش طول عمر آنها شده است. علاوه بر این لغزش قسمت های متحرک بر هم، در دیگر سنسورها مثل پتانسیومتر باعث ایجاد نویز می شود، که این مشکل در سنسورهای مغناطیسی رفع شده است. سنسورهای مغناطیسی به سبب ساختار مناسبی که دارند در محیط های آلوده، چرب و روغنی بخوبی عمل می کنند و به همین علت در اتومبیل و کاربرد های این چنینی بسیار مفید هستند.
جابجایی ( Displacement ) به معنی تغییر موقعیت است. سنسورهای جابحایی به دو نوع افزایشی ( Incremental ) و مطلق ( Absolute ) تقسیم می شوند. سنسور های افزایشی میزان تغییر بین موقعیت فعلی و قبلی را مشخص می کنند. چنانچه اطلاعات مربوط به موقعیت فعلی از دست برود، مثلا منبع تغذیه دستگاه قطع بشود، سیستم باید به مبدا خود منتقل شود.( reset شود.) در نوع مطلق موقعیت فعلی بدون نیاز به اطلاعات مربوط به موقعیت قبلی بدست می آید. نوع مطلق نیازی به انتقال به مرجع خود را ندارد. معمولا سنسورهای جابجایی مطلق را سنسورهای موقعیت ( Position sensor ) می نامند.
در این پروژه سعی شده است تا سنسورهای جابجایی ، موقعیت و مجاورتی ( Displacement , Position , Proximity ) پوشش داده شود.
بطور کلی زمانی که بخواهیم کمیت های فیزیکی مانند جهت ، حضور یا عدم حضور ، جریان ، چرخش و زاویه را اندازه گیری کنیم و از سنسورهای مغناطیسی استفاده کنیم ، ابتدا بایستی تا این کمیت ها یک میدان مغناطیسی را بوجود آورند و یا تغییری در میدان مغناطیسی یا در خصوصیات مغناطیسی سنسور ایجاد نمایند و در نهایت سنسور این تغییر را احساس نموده و آنرا با یک مدار بهسازی به جریان یا ولتاژ مناسب تغییر دهیم.
در طبیعت ما رنگ هایی رو داریم که قابل دیدن هستند مثل : آبی ، زرد ، قرمز ، بنفش ، صورتی و … ، اما رنگ هایی هم وجود دارند که دیده نمیشوند ، به نظر شما در رنگین کمان چند رنگ وجود دارد؟ 7 رنگ !
بله در رنگین کمان 7 رنگ وجود داره که دیده میشه ، که عبارت هستند از:
قرمز : نارنجی : زرد : سبز : آبی : نیلی : بنفش
ما آیا رنگ دیگری وجود ندارد ؟
جواب مثبت است ، دو رنگ دیگر وجود دارد که ما با چشم غیر مصلح ان را نمیبینیم آن رنگها ماواری بنفش (بالاتر از بنفش) و مادون قرمز (پایین تر از قرمز ) است
در بازار الکترونیک شما با دیود های نوری به رنگ آبی زرد قرمز و … برخورد کرده اید و حتما از آنها استفاده هم میکنید ، به همین صورت دیود هایی داریم که نور مادون قرمز تولید میکنند که اگر انها را روشن کنید با چشم غیر مصلح دیده نمیشود و حتما باید با دوربین عکاسی یا فیلم برداری به آن نگاه کنیم ؛ به همین ترتیب گیرنده هایی داریم که قادرند نور مادون قرمز و شدت آن را تشخیص دهند که نمایی از شکل ظاهری انها در زیر آمده است.
اگر قبل از روشن کردن قرستنده در مقابل گیرنده با دستگاه مقاومت سنج (اهم متر) مقاومت دو سر گیرنده را اندازه بگیرید میبینید که مقاومت زیادی حدود 100 کیلواهم دارد که تقریبا مثل یک کلید باز عمل میکند ولی هنگامی که فرستند را در نزدیکی گیرنده روشن میکنید مقاومت بین پایه های آن کم میشود و تقریبا مثل یک کلید بسته عمل می نماید .
"سنسورهای مادون قرمز غیر فعال" قطعاتی الکترونیکی هستند که تشعشعات مادون قرمز از اجسام و اهداف را اندازه گیری می کند. به این سنسورها " PIR" گفته می شود که از مخفف Passive InfraRed sensors گرفته شده است
PIR ها گاهی برای آشکارسازی اهداف متحرک بکار می روند، به این صورت که منبع انتشار اینفرارد با یک دما، مانند بدن، از جلوی منبع اینفرارد دیگر با دمای دیگر، مانند دیوار عبور می کند و بر اساس این تغییر آشکار سازی صورت می گیرد.
همه اشیاء اینفرارد (مادون قرمز) تشعشع می کنند. این تشعشع از دید انسان نامرئی است ولی می تواند با وسایل الکترونیکی که برای این هدف ساخته شده اند، آشکار شود. عبارت "پسیو" در این سنسور به این معنی است که این سنسور از خود هیچ نوع انرژی ساتع نمی کند، و فقط تشعشعات اینفرارد را از قسمت جلوئی سنسور (Sensor Face) دریافت می کند. در هسته یا مرکز PIR یک یا دسته ای از سنسورهای نیمه هادی وجود دارد، که مساحت تقریبی آن یک چهارم اینچ مربع است. این ناحیه از مواد گرما برقی (pyroelectric) ساخته شده است.
سنسورهای فعلی روی چیپ ها از مواد گرما برقی طبیعی یا مصنوعی و معمولا به صورت یک غشا یا لایه نازک ساخته می شوند. بعضی از ترکیبات عبارتند از: گالیوم نیترید (GaN)، کاسیم نیترات (CsNO3)، پلى وینیل فلوراید، مشتقات فنیل پیرازین و لیتیوم تانتالیک (LiTaO3) که مانند کریستال است و خواص پیرو الکتریک و پیزو الکتریک -ویژگى برخى کریستالها که به هنگام اعمال ولتاژ به انها تحت فشار قرار مى گیرند یا به هنگام قرار گرفتن در معرض فشار مکانیکى یک ولتاژ تولید مى کنند- را با هم دارد.
سنسور PIR اغلب به عنوان قسمتی از مدارات مجتمع ساخته می شود و ممکن است شامل یک، دو، سه یا چهار "پیکسل"، شامل مساحتهای مساوی از مواد گرما برقی باشد. ممکن است سنسورها را به صورت جفتهائی به ورودیهای مخالف تقویت کننده های تفاضلی متصل کنند. در چنین ترکیبی اندازه گیریهای PIR ها یکدیگر را خنثی کرده و در نتیجه اندازه متوسط دمای میدان دید از سیگنال الکتریکی برداشته می شود. این به سنسور اجازه می دهد تا در مقابل آشکارسازی خطا که ناشی از تشعشعات نوری یا روشنائی های بزرگ است، مقاومت کند. نورهای روشن پیوسته می تواند این سنسور را اشباع کرده و باعث می شود تا سنسور نتواند اطلاعات بیشتری را ثبت کند. در عین حال این ترکیب تفاضلی، تداخل مد مشترک را مینیمم می کند که مانع از راه اندازی ناشی از میدانهای الکتریکی نزدیک به وسیله می شود. به هر حال این ترکیب نمی تواند دما را اندازه گیری کند و مختص آشکار سازی اشیاء متحرک است.
سنسور مادون قرمز فعال: (Active Infrared Barrier)
سنسور مادون قرمز فعال جزء سنسورهایی است که در حفاظت محیط پیرامون و در فضای باز مورد استفاده قرار میگیرد ولی به دلیل ماهیت عملکرد و دقت متوسط سنسور بیشتر در محیطهایی که سطح متوسطی از حفاظت مورد نظر است به کار گرفته میشود. محوطههای تجاری و مسکونی از این جملهاند. این سنسور از یک فرستنده و یک گیرنده تشکیل شده است که اشعه الکترومغناطیس با طول موج در حدود 900 نانومتر تولید میکنند. این طول موج در محدوده مادون قرمز واقع میشود و به این دلیل به این پرتوها، پرتوهای مادون قرمز (Infrared Beams) گفته میشود.
سنسور با برد کوتاه برای کاربردهای داخلی یا کاربردهایی مانند پوشش درب و پنجره استفاده شده و سنسورهای با برد بالا برای حفاظت محوطه های وسیعتر استفاده میشود. درصورتیکه اشعه مادون قرمز بین فرستنده و گیرنده توسط مانعی قطع شود گیرنده اشعه را دریافت نمیکند و زمینه اعلام آلارم فراهم میظشود.
درصورتیکه بین فرستنده و گیرنده تنها یک اشعه ارسال شود، قرار گرفتن یک مانع کوچک در مسیر اشعه موجب فعال شدن سیگنال آلارم میشود و علاوه بر این یک فرد متجاوز که با اصول عملکرد سیستم آشنا باشد با تخمین محل اشعه و پریدن از روی اشعه یا رد شدن از زیر آن میتواند سنسور را فریب داده و بدون دیده شدن به محیط تحت حفاظت وارد شود.
بههمین دلیل در اکثر کاربردهای فضای باز بیش از یک اشعه مادون قرمز بین فرستنده و گیرنده ارسال میشود به این ترتیب در صورت قطع شدن یک اشعه توسط یک پرنده آلارم اعلام نمیشود اما در اثر قطع شدن چند اشعه در اثر ورود یک شیء بزرگتر سیگنال آلارم سنسور فعال میشود.
این سنسورها در برابر باران و مه به سادگی دچار مشکل میشوند و همین امر موجب میشود در کاربردهای معمولی با سطح حفاظت متوسط بهکار گرفته شوند. وجود قطرات آب در مسیر اشعه ها موجب انحراف و افت زیاد سیگنال مادون قرمز میشود و سیگنال رسیده به گیرنده به قدری ضعیف میشودکه قابل آشکارسازی نبوده و اعلام آلارم میشود.
رله بوخ هلتس یک رله حفاظتی برای دستگاهی است که توسط روغن خنک میشود و یا از روغن به عنوان ایزولاسیون در آن استفاده شده است و دارای ظرف انبساط نیز می باشد . این رله با بوجود آمدن گاز یا هوا در داخل منبع روغن دستگاه و یا پائین رفتن سطح روغن از حد مجاز و یا در اثر جریان پیدا کردن شدید روغن بکار می افتد و سبب به صدا درآوردن سیگنال و دادن علامت می شود و یا اینکه مستقیماً دستگاه خسارت دیده را از برق قطع می کند .
رله بوخ هلتس به قدری دقیق است که به محض اتفاق افتادن کوچکترین خطائی عمل می کند و مانع آنمی شود که دستگاه خسارت زیادی ببیند . اگر از این رله برای ترانسفورماتور روغنی استفاده شود ، خطاهائی که سبب بکار انداختن رله بوخ هلتس می شوند عبارتند از :
در خطاهای کوچک ، هوا یا گازهای متصاعد شده از روغن ، وارد لوله رابط بین ترانسفورماتور و منبع ذخیره روغن (ظرف انبساط) شده و به داخل رله بوخ هلتس که در یک قسمت از این لوله قرار دارد راه یافته و به طرف فسمت بالای رله که به صورت مخزن گاز درست شده است صعود می کند و در آنجا جمعمی شود .
گازهای راه یافته به داخل رله بوخ هلتس به سطح فوقانی روغن فشار می آورد و باعث پائین آوردن سطح روغن در رله بوخ هلتس میگردد . این فشار به شناور بالائی رله ، منتقل میشود و آن را به طرف پائین میراند . حرکت شناور باعث بستن و یا باز کردن کنتاکتهائی میشود که جهت دادن فرمان در یک محفظه جیوه ای تعبیه شده است . در موقعی که خطا به صورت یک اتصالی شدید باشد ، گازهای متصاعد شده در اثرقوس الکتریکیبه قدری زیاد می گردد که موجب راندن موجی از روغن به داخل ظرف انبساط میشود . اگر سرعت موج روغن از مقدار معینی که قبلاً تنظیم شده است تجاوز کند ، قبل از اینکه گازها به داخل رله بوخ هلتس راه یابند ، دریچه اطمینان رله به کار می افتد و باعث قطع ترانسفورماتور از برق می شود . اگر رله بوخ هلتس دارای دو گوی شناور باشد ، دریچه اطمینان طوری تنظیم می شود که در صورتیکه سرعت حرکت روغن مابین 50 تا 150 سانتیمتر بر ثانیه رسید ، رله قطع کند .
در رله هایی که شامل یک گوی شناور میباشد ، دریچه اطمینان با شناور لحیم شده است و در این رله ها وقتی سرعت روغن به 65 تا 90 سانتیمتر بر ثانیه رسید رله عمل می کند .
در طراحی شبکه های برق و تنظیم پروژه های توزیع انرژی نیاز به شناخت کابل و کاربرد آن داریم.
هر کابلی با سطح مقطع مشخص قادر به انتقال جریان معینی است که اگر جریان از آن حد تجاوز کند سبب تلفات انرژی الکتریکی، کوتاهی عمر کابل و یا سوختن آن می شود. لذا در طراحی شبکه سه اصل زیر را باید در نظر گرفت:
الف) جریان برق از حد مجاز کابل بیشتر نشود.
ب) افت ولتاژ نباید بیشتر از حد مجاز باشد.
ج) محاسبات اقتصادی در مورد سطح مقطع انتخابی از نظر افت توان انجام شود.
در ادامه پیرامون چگونگی انتخاب سطح مقطع کابل با در نظر گرفت سه اصل فوق، شرح مختصری ارایه می گردد:
الف) انتخاب کابل با توجه به جریان مجاز آن
جریان مجاز کابل های برق و کابل های مخصوص روشنایی و سیم کشی به ترتیب در جدول 1 تا 4 داده شده است. لازم به یادآوری است که اگر از کابل های برق (جدول 1) بخواهیم بطور دایم بارگیری کنیم بسته به نوع خاک باید خشک شدن آن و بالا رفتن مقاومت حرارتی آن را در نظر گرفته و محاسبات دقیق را انجام دهیم.
تعیین سطح مقطع کابل
برای پیدا کردن سطح مقطع کابل مورد نظر ابتدا بایستی جریان گذرنده (مقدار آمپر) از این کابل را مشخص نموده و در این مورد می توان روابط زیر را بکار برد:
که در آن:
P توان واقعی برداشتی به وات
V ولتاژ خط به ولت
I جریان عبوری به آمپر
Pf ضریب توان
در این حال پیش از پیدا کردن سطح مقطع کابل باید با توجه به شرایطی که کابل در آن قرار می گیرد، ضرایب مربوطه را از جداول 2 و 3 بدست آوریم و از رابطه زیر جریان مجاز کابل را محاسبه کنیم:
سپس از روی این جریان و با توجه به جریان مجاز کابل های برق (جدول 1) و کابل های مخصوص روشنایی و سیم کشی (جدول 4) سطح مقطع کابل مورد نظر بدست می آید.
ب) تعیین افت ولتاژ
همیشه در طراحی شبکه ها باید سطح مقطع کابل طوری انتخاب شود که افت ولتاژ در کابل درصد کوچکی باشد.
این افت ولتاژ برحسب تنوع شبکه و نیز ولتاژ شبکه متغییر است. مثلا برای شبکه 380/ 220 ولت، افت ولتاژ مجاز حدود 5 درصد است. بنابراین پس از تعیین سطح مقطع باید بررسی شود که آیا سطح مقطع انتخابی این شرط را نیز برآورده می سازد یا نه؟
اگر درصد افت ولتاژ در حد مجاز نباشد باید سطح مقطع بالاتری را انتخاب کنیم.
برای تعیین درصد افت ولتاژ می توان روابط زیر را بکار برد:
که در آن:
R مقامت هادی در 70 درجه اهم
V ولتاژ خط به ولت
L طول کابل به متر
X مقامت القایی (اندوکتانس) به اهم (ستون چهارم جدول 5)
ج) بررسی اقتصادی
برای طراحی اقتصادی شبکه و بهینه سازی نیازمند داده های آماری و مقادیر واقعی نظیر قیمت کابل، هزینه نصب و نگهداری، بهای هر کیلو وات ساعت مصرفی، مدت زمان بهره برداری از کابل و غیره هستیم.
چنین ارزیابی در این توضیح مختصر نمی گنجد و فقط به این موضوع اشاره می کنیم که با افزایش سطح مقطع چون مقاومت کاهش می یابد، افت ولتاژ نیز کم شده و درنتیجه از افت توان نیز کاسته می شود. بنابراین قیمت توان تلف شده در کابل نیز تقلیل می یابد، از طرفی کابل با سطح مقطع بزرگتر دارای قیمت بیشتری نیز می باشد. بهینه سازی به این دو مورد بستگی دارد.
برای روشن شدن مطالب گفته شده به بررسی مثال زیر می پردازیم.
د) چند توصیه در مورد نصب کابل
کابل برق مانند هر وسیله برای استفاده صحیح و افزایش عمر نیاز به رعایت نکاتی است که به پاره ای از آنها اشاره می کنیم:
* کابل پلاستیکی (پی وی سی) را نباید در زمستان که دمای هوا زیر صفر است کابل کشی نمود. در شرایط خاص کار در سرما می توان از پیش قرقره کابل را در محیط گرم قرار داد و پس از گرم شدن بی درنگ آن را نصب کنیم. البته پس از نصب مانعی ندارد دمای محیط به حد -30 هم برسد.
* هنگام نصب کابل شعاع خمش آن نباید از 12 برابر قطر خارجی آن کمتر باشد.
* در صورتیکه کابل در خاک دفن شود، باید کانالی به عمق 70 سانتیمتر حفر کرد و کابل را در این کانال داخل خاک نرم (الک شده) به ارتفاع 20 سانتیمتر قرار داد و سپس روی آن آجر و در پایان خاک معمولی ریخت. این کار از فشار طبقات خاک بر روی کابل و آسیب دیدگی آتن در هنگام کندن زمین با بیل و کلنگ جلوگیری می کند.